SolutionPartner # Introduction of LUCON Thermally Conductive Materials # **Introduction of Thermally conductive Plastics** # Polymer (Low conductivity) Conductive Filler (High Conductivity) Thermally Conductive Plastics #### ☐ Concept # **Introduction of Thermally Conductive Plastics** #### □ Benefits #### Aluminum heat sink #### Weight Reducing Effect - Relatively lighter than metals (Specific Gravity : Al: 2.7, Plastic: 1.5) #### Design Flexibility - Increased design flexibility by Injection molding - Increased Productivity - Easy Installation - Cost Saving - No post processing or surface treatment, #### Thermoplastic heat sink # **Introduction of Thermally conductive Plastics** #### □ Applications - Connectors - Encapsulated Windings - Housings / Enclosures - Heat Sinks - Heaters / Heat tubes - LED Lighting - Switches / Resistors - Electro-motors - Heat exchangers **LED Heat Sink** **CPU** heat spreader **Electro motors** **Heat exchangers** Overmolded heat pipe **Heat tubes** # **Introduction of Thermally conductive Plastics** #### ☐ Types #### **Electrical Insulate** Ceramic Filler: BN, MgO etc. PPS, PC, PA etc. #### **Electrical Conductive** **Metal & Carbon Filler** PPS, PC, PA etc. # LG Chem. Thermally Conductive Plastics: LUCON 9000 Series | Type | Grade | T.C (W/mK) | S.R (Ω) | UL94 | Color | | |--------------------------|--------|------------|-------------------|------------|-------------|--| | Electrical | PN9101 | 10 | <108 | V-0 | Black | | | Conduction | CP9071 | 7 | <10 ⁷ | V-0 (1.6T) | Black | | | Electrical
Insulation | PA9055 | 5 | >10 ¹⁶ | V-2 (1.6T) | White | | | | PN9075 | 7 | >1016 | V-0 | Light brown | | | | CP9075 | 7 | >1016 | V-0 (1.6T) | White | | ### Datasheet of LUCON 9000 series: Electrical Insulation | Property | Unit | Test Method | PN9008 | PN9055 | PN9075 | PA9055 | CP9055 | CP9075 | |---|--|--------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|--------------------------------|---------------------------------|---------------------------------| | Mechanical Tensile Strength Elongation @ Break Flexural Strength Flexural Modulus Izod Impact | kg _f /cm²
%
kg _f /cm²
kg _f /cm²
kg _f cm/cm | D638
D638
D790
D790
D256 | 750
<5
1200
110,000
2 | 600
<2
750
117,500
2 | 710
<2
760
140,000
<2 | 600
5
720
76,000
3 | 510
2
580
100,500
2 | 560
2
580
110,000
2 | | Physical Specific Gravity Mold Shrinkage | -
% | D792
D955 | 1.95
0.4~1.0 | 1.91
0.4~0.8 | 1.96
0.4~0.8 | 1.75
0.4~0.8 | 1.80
- | 1.84
- | | Thermal Heat Deflection Temp. Thermal Conductivity | °C
W/m·K | D648
E1461 | 250
2 | 250
5 | 260
7 | 200
5 | 130
5 | 135
7 | | <i>Flammability</i> Flame Retardancy | class | UL94 | V-0(0.8T) | V-0(0.8T) | V-0(0.8T) | V-2(1.6T) | V-0(1.6T) | V-0(1.6T) | | Electrical Surface resistance | | | >10 ¹⁶ | >10 ¹² | >10 ¹² | >10 ¹⁶ | >10 ¹² | >10 ¹² | | Base Polymer | | | PPS | PPS | PPS | PA6,6 | PC | PC | ## **Datasheet of LUCON 9000 series: Electrical Conduction** | Property | Unit | Test Method | PN9051 | PN9071 | PN9101 | CP9031 | CP9051 | CP9071 | |---|--|--------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | Mechanical Tensile Strength Elongation @ Break Flexural Strength Flexural Modulus Izod Impact | kg _f /cm²
%
kg _f /cm²
kg _f /cm²
kg _f cm/cm | D638
D638
D790
D790
D256 | 600
<5
850
110,000
2 | 530
<4
800
117,500
2 | 600
<4
900
120,000
2 | 690
<4
900
65,000
<5 | 550
<5
700
60,500
<5 | 470
<5
650
85,000
<5 | | Physical Specific Gravity Mold Shrinkage | -
% | D792
D955 | 1.55
- | 1.60
- | 1.95
- | 1.40
- | 1.40
- | 1.55
- | | Thermal Heat Deflection Temp. Thermal Conductivity | °C
W/m·K | D648
E1461 | 210
5 | 230
7 | 260
10 | 130
3 | 130
5 | 130
7 | | Flammability Flame Retardancy | class | UL94 | V-0(0.8T) | V-0(0.8T) | V-0(0.8T) | V-0(1.6T) | V-0(1.6T) | V-0(1.6T) | | Electrical Surface resistance | | | <10 ⁷ | <10 ⁵ | <10 ⁵ | <10 ⁷ | <105~7 | <105~7 | | Base Polymer | | | PPS | PPS | PPS | PC | PC | PC | # **LG Chem Thermally Conductive Plastics** #### ☐ Design Solution for Thermal Management